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BY AN INFORMATION-WEI

Geuﬁge

: Given a set of irregularly located measurements,

‘recently Kriging techniques have been shown capable
not only to give estimated values but also to quantify|
estimation uncertainties.
value and the associated estimation uncertainty at an |
unmeasured pcint are attempted following a maximum i
likelihood approach by maximizing the information
transferable from measured points to an unmeasured
point. This is done by using a dynamic programming
scheme. An estimated value is interpolated from a
unique surface which is splined over the measured
points according to their information wejghts. The |
estimation uncertainty is due to the variance propaga-
tion and the spline model deviations.

i

Maximum Likelinood and Information

From a single measurement at point i, it is rea-
soned that the best guess of the same variable at
point 0 anywhere in the domain will be the same as the
measured value, but the variance of the guess in- |
creases with distance. In case of multiple point mea-
surements, a function passing near those measured
points is considered to be a likely interpolation
function of the variable. Hence the maximum likeli-
hood arnroach is followed to specify the interpolation
function,

For a givan probability density function of f(Z),
the likelihood function L of a state of nature o is
given by (Lindgren, B.W. 1968, Statistical Theory)
(1) L(e) = f(zi;e), i=1,...N
where zi(xi,vi) are measured points

The information 1{e) from a single observation
ZS is defined by

- a_ . 2
(2) o) = E[ 57 Tog f(Zg; 0)]

Note that when observations are independent, informa=-
tion is additive.

Now let Z be estimated by an interpolation or
spline function.
(3 Z=0- T
where @ is a state vector and T is a position vector.
The maximum Tikelihood is achieved by setting the

partial derivative of L with respect to each component

of o to zero.

aL(oe
(@) —agf-w

j=1, ...k

where k is the number of components in ©. There will
be k equations to solve for k unknowns. When Ii are

indepencent normally distributed, then, »
- N 1 3 4\ 2
(5) L(e) = {,%;) N (g —-01_ Jexpl 1 555(2-23)"]
. 10 : 10
: i=1 i=1

Ny
(6) Ile) =1 —Los

i=] 2a‘.0

*For further information contact George Shih, South
Florida Water Management District, P. 0. Box V,
West Palm Beach, Florida 33402

In this paper, the estimated

T

| 1

{
TWO DIMENSIONAL INTERPOLA 104 AND UNCERTAINTY ESTIMATION

1D-PUINT-SPLINE METHOD* i

Shih |
where aéoz is the variance of using the Zi value as an}
lestimate”at point o, and multiplication product

of N terms.

i=1

l
! Variance Propagation and Maximum Information l

As mentioned before, it is reasoned that confi-

‘dence in a quess decreases with the increase of dis-
tance. Suppose the propagation o variance is ex-
ressed by 2 2
ed by o4 = @ (hy,) where hy  fs the distance be- |

‘tween points i and o. Then o, is the variance gener-]
Eated if the value measured at “point 1 is used as an
estimate of point o. When data values i and j are useq
|to.e5t1@ate for point o, the varianges ca]calated from !
points i and j to point o, namely S and %o cannot be
\

jconsidered independent because of the intercorrelation

between points i and j. In other words, to use two or
ore measurements to estimate an unmeasured point, the

‘information derived from these measurements is not

:additive. The degree of correlat-on from j to 1 is

(7) Rfj =1 - Uj12/502

where oﬁ is the total variance at point 0. Thus, to

point o; information derivable frim points i and j is
1
@) 1°=3-7 + —F— (1 -R
Zeyg ZGJ.D i

In order to obtain the maximum in‘ormation from all the
data points, the sequence of data point selection makes
a difference. A dynamic programm'ng approach is taken '
such that at each stage of single data point inclusion,
the point with maximum additional information with re- |
spect to the existence of selectel points is chosen.

1
o . —
(9) In = Max EZUESZ— )

J

; :
21(1 - Rkj 1, k=n,...N i
where 1° is the maximum independeit information contri4
bution "to point o due to inclusin of nth point, se- |
|lected among (N-n+1) available ponts with (n-1) pointI
already selected. Because 19 dimpishes quickly, the 1
method results in a localized proection from a few
nearby measurements for the estimtion. When the dy- |
namic programming principal holds the maximum infor-
mation transferred from N data ponts to point o is i

0. N 1 i-1
(10) 1 Max o [—-—Tzo m(1 - _”)]
1 i= io -1:]
iI" other words, the minimum estim tion vgriance achiev-
‘able is 1/19, It is casy to see hen 0= 0, Oz, |
point o can be computed without ¢ror. 'This occurs
iwhen point o falls exactly on oneof the "error free"
‘measurement points.

Estimation Uncerh1nt1

The maximum information tran ferable from data
points to the unmeasured point IC {s dependent on the
variance propagation function sel cted, but independent
of the spline model, or interpolaion function to be
selected. An imperfect spline meel will further de-
grade the estimation reliability. In most practical




‘cases, Tittle knowledge about the appropriate spline
mndel is available. Statistical procedures, such as |
trend analysis, can be used to identify a signifi-
cant function for interpolation. At any rate, a plane
‘equation, which is the simplest mode! that can extend
from point measurements to areal information, can be
used. With respEct to a given point o at (x v ¥ ), a
unique set of 96 i=1,...N, determined accoPdan& to |
‘the procedure 'of Equation (9), expands Equation (3)
‘into three simultaneous equations to solve for (a b0 '
¢, ). the coefficients for the plane equation.

ONote that each measured point i is weighted according
to the information contributable to point a. If the
selected spline model is perfect with this given set of
data, it will pass through all the measurement points,
e.g. Zi =lyma ¢+ boxi + covi’ i=1,...N. If the
model is not,perfect, the point discrepency is express-
ed by (Zf - Zi) .- Since each point is weighted, the
effect of Ehe model error to the estimated value is
oz - f}) 19/10, where 19 and 1° are obtained from

equations (9) and (10) respectively. Finally, the esti-
stimation uncertainty of ZO is

N -
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Calibration of Variance Propagation Function

The variance propagation function is analogous to
the variogram in Kriging. Consequently the function
can be derived in the same way as the variogram. A
variance propagation function is viewed more 1ike a
hypothetical function that is related to the data set,
hence, it is easier to calibrate the function directly,
The calibration procedure used here is sometimes caT]eq
cross -validation.

Let the variance function be expressed by I

2 _ 2
(12) ¢ (hio) =+ f(hio,_EJ

where ug is the known measurement uncertainty of data
point i, and f is a monotonically increasing function
of distance h, such as a power function, or a Gaussian
function, witﬂoparameter vector P = (P1,P2,...}.

2 _ It is required that f(0,P) = 0, so that when

95 =0, measured point i possesses infinite informa-

1
tion for that point. Otherwise ths se]ectiag of f is
very mych J%dgwental. Note that o (h1j) o (in)
# ok

when g¢
. i

i
When a given set of measurement points are used °
in an interpolation, the implicit assumption is that
this set of data is related to the unknown point. The
‘maximum variance by propagation is,

2
3) = gy p) |

where "ij[max is the maximum distance between the mea-

surement psints. This is considered to be the total
variance o% of all points to be used in Eguatign (7).
At point o“where hin’"ij’ there may be 9;5 > 05, then

i 0
the measurement at point i is considered to be useless
for the estimation at point o. In other words, at a
point away from the domain of data paints, there may
not be enough usable data to specify the interpolation
‘function. An estimate at this point derived from this
set of data is meaningless. Evidently, the selection |
.of hijlmaxas a range for information derivation is

Weak - any appropriate distance can be selected from
' judgment,

|
L

i

Cross-validation is a procedure to test 3 model |
performance by predicting the data themse]ves. Out of
the N given data points, one of them, say i, is syp- |
ressed from the data list. Only the remaining N-1
points are used to estimate the value Z at i, For a
given set of Rarameters P, the sum of déviation !

squared Qk =1§}{Z1 - ?ijz are recorded. The best set

of parameters is the one that gives minimum Q , while |

matching estimation uncertainties on the entiFe region

That is, minimizes Q, , subject to = 5 U, where U,
k Ok iz] 1 Al

| is the estimation uncertainty for data peint i in the

cross-validation,

Computation Procedures

Select a spline model, e.q. Equation (3).

Select a variance propagation function, e.g. Equa-

tion (12). . )

3. Calibrate for the parameters in Equation (12} by
cross-validation., A simple algorithm was adoptad
for the purpose. To determine the ¢ in Equa-
tion (3), the weighting factors are determined
according to Equation (9). The estimation valye
and uncertainty are computed by Equations (3) and
(11), respectively. :

4. With Equation (lE{ specified, Equations (3) and

(11) can be solved at any (grid) point.
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Discussion

To apply the method, three judgmental selections
have to be made: the spline model, the variance prop-
agation function, and the total variance. In each
selection, the best choice is obviously dependent on
the type of problem at hand. Nevertheless, the fol-
Towing observations may help in the selections,

It has been mentioned that a significant trend
function may be used as a spline model. But what if
the given data set is the residual of a trend function?

-It is known that each residual is prevailing only lo-

cally; on the entire region, the residuals sum up to
be zero. Information for the support of the local
variation is only derivable from a few nearby points.
Hence a simple interpolation model, requiring few mea-
Surement points for identification, is preferred. In-:
fact, it may be wise when a significant trend is iden-
tifiable, to work with the residuals using a simple
plane as the interpolation model.

The variance propagation function is assumed to ba
monotonic, isotropic and homogeneous for simplicity in
exp]anat19n‘ The fact that the method does not !
require of . = 5.2 relaxes those limitations. The pro-
blems of ﬁéing IMmore complicated functions are asso- |
ciated with data Support and physical process consid-
erations. The behavior of the variance propagation
function is more important in the small distance, up |
to around the mean distance between measurements. i
Fortunately, cross-validation procedures cover the |
range effectively,

The assumption of uniform total variance and its
estimation are weak points in the present procedure,
Further work 1s being done to incorporate the trend
analysis into the method. The concept being that, af-
mraﬂwﬁwmtwmdh1mmﬂmthVnhmeM
meuwdmyMtamasmemulnﬂmmatme'
point for the residual. Then the present procedure
can be applied with given residuals and non-uniform |
total variances, to obtain the corrections on top of I
the trend function estimation. .t




